# LESSON-13

#### **Empirical Relations for Free and Forced Convection**

### 1. Free Convection:

In case of free convection, heat transfer coefficient or Nusselt is expressed as  $Nu_a = h L/k = f (Gr, Pr)$ 

Where

Nu<sub>a</sub> is average Nusselt Number Gr is Grashoff number Pr is Prandtl Number

# A) For Vertical Plates and Cylinders

$$Nu_{a} = \frac{h_{a}L}{K} = 0.53 (Gr Pr)^{\frac{1}{4}}$$
 for (Gr Pr) < 10<sup>5</sup>  

$$Nu_{a} = \frac{h_{a}L}{K} = 0.56 (Gr Pr)^{\frac{1}{4}}$$
 for 10<sup>5</sup> < (Gr Pr) < 10<sup>8</sup>  

$$Nu_{a} = \frac{h_{a}L}{K} = 0.13 (Gr Pr)^{\frac{1}{3}}$$
 for 10<sup>8</sup> < (Gr Pr) < 10<sup>12</sup>

where

L is Characteristic length and it is the height of the plate or cylinder  $h_a$  is average heat transfer coefficient. Gr is Grashoff Number

#### **B)** Horizontal Cylinders

$$Nu_{a} = \frac{h_{a}L}{K} = 1.1 (Gr Pr)^{\frac{1}{6}}$$
 for  $\frac{1}{10} < (Gr Pr) < 10^{4}$   

$$Nu_{a} = \frac{h_{a}L}{K} = 0.53 (Gr Pr)^{\frac{1}{4}}$$
 for  $10^{4} < (Gr Pr) < 10^{9}$   

$$Nu_{a} = \frac{h_{a}L}{K} = 0.13 (Gr Pr)^{\frac{1}{3}}$$
 for  $10^{9} < (Gr Pr) < 10^{12}$ 

Where

L is Characteristic length and in this case it is the diameter of the cylinder  $h_a$  is average heat transfer coefficient.

Gr is Grashoff Number

### C) Horizontal Square or Circular Plates

• For horizontal hot surface facing upward or cold surface facing downward.

$$Nu_{a} = \frac{h_{a}L}{K} = 0.71 (Gr Pr)^{\frac{1}{4}}$$
 for  $10^{3} < (Gr Pr) < 10^{9}$   
$$Nu_{a} = \frac{h_{a}L}{K} = 0.17 (Gr Pr)^{\frac{1}{3}}$$
 for  $(Gr Pr) > 10^{9}$ 

• For horizontal hot surface facing downward or cold surface facing upward.

$$Nu_{a} = \frac{h_{a}L}{K} = 0.35 (Gr Pr)^{\frac{1}{4}}$$
 for  $10^{3} < (Gr Pr) < 10^{9}$   
$$Nu_{a} = \frac{h_{a}L}{K} = 0.08 (Gr Pr)^{\frac{1}{3}}$$
 for  $(Gr Pr) > 10^{9}$ 

Where

L is Characteristic length and in case of square plate it is the side of the plate

L is Characteristic length and in case of circular plate it is the diameter

h<sub>a</sub> is average heat transfer coefficient.

Gr is Grashoff Number

The properties of the fluid should be calculated at the temperature  $\frac{T_s + T_f}{2}$ 

Where  $T_s =$  Plate surface temperature  $T_f =$  Fluid temperature.

### 2. Forced Convection

In case of forced convection, heat transfer coefficient or Nusselt is expressed as  $Nu_x = f(x^*, Re_x, Pr)$ 

Where

Nu<sub>x</sub> is local Nusselt Number

Rex is local Reynolds Number

$$x^* = \frac{x}{L}$$
 is dimensionless distance

$$Nu_a = f(Re_L, Pr)$$

Subscript 'a' indicates an average distance from  $x^* = 0$  to the location of interest. Where,

Nu<sub>a</sub> is average Nusselt Number

ReL is Reynolds number at the location of interest

#### (A) Flow of fluid over a flat surface at constant temperature

• For laminar flow over flat plate which is valid for  $\text{Re}_{\text{L}} < 5 \times 10^5$ .

$$Nu_{a} = \frac{h_{a}L}{K} = 0.664 \quad Re_{L}^{\frac{1}{2}} \quad Pr^{\frac{1}{3}}$$
$$Nu_{x} = \frac{h_{x}X}{K} = 0.332 \quad Re_{x}^{\frac{1}{2}} \quad Pr^{\frac{1}{3}}$$

where  $h_a$  is average heat transfer coefficient.

 $h_x$  is the local heat transfer coefficient.

$$h_{a} = \frac{1}{L} \int_{0}^{L} h_{x} dx$$

$$Nu_{a} = 2 Nu_{x} \text{ and } h_{a} = 2 h_{x}$$

• If the flow condition on the flat plate is partly laminar and partly turbulent then for

i) Only Laminar region

$$Nu_{a} = \frac{h_{a}L}{K} = 0.664 \quad Re_{L}^{\frac{1}{2}} \quad Pr^{\frac{1}{3}}$$
$$Nu_{x} = \frac{h_{x}x}{K} = 0.332 \quad Re_{x}^{\frac{1}{2}} \quad Pr^{\frac{1}{3}}$$
$$h_{a} = \frac{1}{L}\int_{0}^{L}h_{x}dx$$

where,  $h_a$  is average heat transfer coefficient.

 $h_x$  is the local heat transfer coefficient.

ii) Only Turbulent region, which is valid for  $Re_L > 5 \times 10^5$ ,

$$Nu_a = \frac{h_a L}{K} = 0.037 \text{ Re}_L^{0.8} \text{ Pr}^{\frac{1}{3}}$$
 Which is valid for  $5 \times 10^5 < \text{Re}_L < 10^7$ 

$$Nu_x = \frac{h_x x}{K} = 0.0296 \text{ Re}_x^{0.8} \text{ Pr}^{\frac{1}{3}}$$
 Which is valid for  $5 \times 10^5 < \text{Re}_L < 10^7$ 

$$h_a = \frac{1}{L} \int_0^L h_x dx$$

Where  $h_a$  is average heat transfer coefficient.  $h_x$  is the local heat transfer coefficient.

iii) Both Laminar and Turbulent region (mixed flow)

$$Nu_{a} = \frac{h_{a}L}{K} = \left[ 0.037 \quad \text{Re}_{L}^{0.8} - 871 \right] Pr^{\frac{1}{3}} \text{ which is valid for } 5 \times 10^{5} < \text{Re}_{L} < 10^{8}$$

The properties of the fluid should be calculated at the temperature  $\frac{I_s + I_f}{2}$ 

Where  $T_S$  is plate surface temperature  $T_f$  is fluid temperature

## (B) Fluid is flowing inside the tube or through the annulus

$$Nu_{a} = \frac{h_{a}L}{K} = 0.023 \quad Re_{D}^{0.8} \quad Pr^{0.4}$$

Where L is Characteristic length and in this case, it is the diameter of the pipe  $2300 < \text{Re}_{\text{D}} < 12 \text{ x} 10^4$ where

and 
$$0.7 < Pr < 120$$
, and  $\frac{L}{D} < 60$ 

The properties of the fluid should be taken at the mean temperature of the fluid  $T_{f}$ 

defined as: 
$$T_f = \frac{T_s + T_m}{2}$$
 where  $T_m = \frac{T_i + T_o}{2}$ 

Where T<sub>i</sub> and T<sub>o</sub> are the inlet and outlet temperatures of the fluid and  $T_s$  is surface temperature of the tube.

#### **Characteristic Length or Equivalent Diameter (Lc or De):**

Equivalent diameter is usually expressed by the following equation

$$D_e = \frac{4A_c}{P} = \frac{4\frac{\pi}{4}D^2}{\pi D} = D$$

Where  $A_c = Cross-sectional Area$ and P = Perimeter.

So for circular tube  $D_e = D$  (inner diameter of the tube). The equivalent diameter is also known as characteristic length. The characteristic lengths of a few geometries are given below.

#### The fluid is flowing through a rectangular duct as shown in Figure 1, then 1) 4 1

$$L_{c} = \frac{4A_{c}}{P} = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b}$$
  
if a = b, then  
$$L_{c} = \frac{2a^{2}}{2a} = 2a$$



#### 2) If the fluid is flowing through the annulus as shown in Figure 2, then $\pi \left( D^2 - d^2 \right)$ ΔΔ 1 1 I)

$$L_{c} = \frac{4\pi_{c}}{P} = \frac{4}{1} \times \frac{\pi}{4} \frac{(D - d)}{1} \times \frac{1}{\pi(D + d)} = (D - d)$$



Figure 2

3) If the fluid is flowing through the annulus as shown in Figure 3, then  $L_{c} = \frac{4A_{c}}{P} = \frac{4(a_{1}b_{1} - a_{2}b_{2})}{2[(a_{1} + b_{1}) + (a_{2} + b_{2})]}$ If  $a_{1} = b_{1}$  and  $a_{2} = b_{2}$ , then  $L_{c} = \frac{4A_{c}}{P} = \frac{4(a_{1}^{2} - a_{2}^{2})}{(2a_{1} + 2a_{2})} = (a_{1} - a_{2})$ 





4) If the fluid is flowing through the annulus as shown in Figure 4, then

$$L_{c} = \frac{4A_{c}}{P} = \frac{4\left(a \ b \ -\frac{\pi}{4}d^{2}\right)}{2(a+b) + \pi d}$$

If 
$$a = b$$
, then

$$L_{c} = \frac{4a^2}{4a + \pi d}$$



Figure 3

### **REVIEW QUESTIONS:**

- Q.1 Equivalent diameter or length, L<sub>c</sub> is espressed as
  - a) 4 × Perimeter / Area of crosssection b) Area of cross-section / Perimeter
  - c) Area of cross-section × Perimeter
- d) 4 × Area of cross-section / Perimeter

Q.2 Equivalent diameter or length, L<sub>c</sub> of a pipe is equal to its

- a) Area of cross-section b) Length
- c) Diameter d) Perimeter
- Q.3 Mean fluid temperature at which properties of fluid are determined is equat to
  - a) Average of surface and fluid temperature
- b) Averae of fluid temperature
- c) Sum of independent and dependent varialbes
- d) Differnce of independent and dependent variables
- Q.4 If product of Grashoff and Prandtl numbers is less than  $10^5$ , then

a) 
$$Nu_{a} = \frac{h_{a}L}{K} = 0.56 (Gr Pr)^{\frac{1}{4}}$$
  
b)  $Nu_{a} = \frac{h_{a}L}{K} = 0.13 (Gr Pr)^{\frac{1}{3}}$   
c)  $Nu_{a} = \frac{h_{a}L}{K} = 0.18 (Gr Pr)^{\frac{1}{2}}$   
d)  $Nu_{a} = \frac{h_{a}L}{K} = 0.53 (Gr Pr)^{\frac{1}{4}}$