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Radiation between Two Infinite Parallel Plates and Proof of Kirchhoff’s law of Radiation:  

At a given temperature, the total emissive power of a body is equal to its absorptivity 

multiplied by total emissive power of a perfect black body at that temperature.  

              Therefore        E = αEb 

  But the ratio of total emissive power of a body to the total emissive power of a black body at 

the same temperature is called the emissivity of the body and is numerically equal to 

absorptivity.  
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Consider two bodies C and D whose absorptivity are αc and αd as shown in Figure 1. 
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                                                                      Figure 1 

 

Considering the energy emitted by the body D.  

(1) D emits the energy = Ed                                                                                                 (1)  



(2) C absorbs energy = Ed. αc                                                                                              (2) 

     and reflects energy=Ed (1 - αc)                                                                                       (3)  

(3) D absorbs energy = Ed αd (1 - αc)                                                                                  (4) 

      and reflects energy = Ed (1 - αd) (1 - αc)                                                                       (5) 

(4) C absorbs energy  = Ed αc (1 - αc)  (1 - αd)                                                                    (6) 

      and reflects energy = Ed  (1 - αc)
2  (1 - αd)                                                                    (7) 

(5) D absorbs energy  = Ed. αd (1 - αc)
2  (1 - αd)                                                                  (8)  

      and reflects energy = Ed  (1 - αc)
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2                                                                   (9)  

and so on upto   times.  

Considering the energy emitted by the body C.  

(1) C emits the energy = Ec                                                                                                    (10)  

(2) D absorbs energy = Ec. αd                                                                                                 (11) 

     and reflects energy=Ec (1 – αd)                                                                                          (12)  

(3) C absorbs energy = Ec αc (1 – αd)                                                                                      (13) 

      and reflects energy = Ec (1 – αc) (1 – αd)                                                                          (14) 

(4) D absorbs energy  = Ec αd (1 – αd)  (1 – αc)                                                                       (15) 

      and reflects energy = Ec  (1 – αd)
2  (1 – αc)                                                                        (16) 

(5) C absorbs energy  = Ec. αc (1 – αd)
2  (1 – αc)                                                                      (17)  

      and reflects energy = Ec  (1 – αd)
2  (1 – αc)

2                                                                       (18)  

and so on upto infinite number of  times.  

Considering equations (1), (4), (8), (11), (I5),   net energy lost by the body D is expressed as 

         = Energy emitted by it – energy absorbed by it 

q(dc) =Ed – [Ed αd (1 - αc) + Ed. αd (1 - αc)
2  (1 - αd) + ….] – [Ec. αd + Ec αd (1 – αd)  (1 – αc) 

+….] 

Assuming   (1 - αc) (1 – αd) = K 

  q(dc)  = Ed – Ed αd (1 - αc) [1 + K + K2  + …...] – Ec. αd [1 + K + K2  + ….] 

But   1 + K + K2  + …... = (1 –K)-1 

  q(dc) = Ed – (1 –K)-1 [Ed αd (1 - αc) + Ec. αd ] 
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Substituting the values of K  
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i) If originally both bodies are at same temperature  

Then     q(dc)  = 0  , Then equation (19) can be written as 

 dc cd αEα E =  

Assuming C as black body       
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Subscription ‘b’ represents black body. 

However, Ed / Eb is the emissivity of body ‘D’ according to definition of emissivity.                    

Therefore, εd = αc  This is the statement of Kirchoff’s law and hence it is proved.

 
ii) If both the bodies are at different temperatures 

Using equation (19) 
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According to Stefan-Boltzman Law 
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Substituting these values in equation (19), we get 
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Radiation Shields 

Generally, the shields are used for reducing the heat radiation from one plate to another 

plate. A shield 3 is placed in between the two plates as shown in Figure 2 and plates and 

radiation shield  are at temperatures T1, T2 and T3. 
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                                                                      Figure 2 

 

Assuming there is no temperature drop in the shield and considering the system is in steady state 

condition, we can write down the heat flow equation as  
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F1-3= 1 as plates are parallel to each other 



Similarly, 
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 For steady state conditions, Q1-3=Q3-2  
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 If ε1= ε2= ε3, equation (23) becomes 
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Substituting the value of T3 from equation (24) in equation (21), we get 
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If there is no radiation shield present between plates 1 and 2, heat radiated is expressed as 
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Comparing equations (25) and (26), we get 

                     Q1-2(with shield) = ½ Χ Q1-2(without shield) 

 

It means that with the addition of radiation shield, heat transfer rate is reduced to half of 

that of without the presence of radiation shield between two parallel bodies exchanging heat with 

each other by radiation. If ‘n’shields are present between the two radiating bodies, then the heat 

transfer will be expressed as 
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