
LESSON 3 

 

One-Dimensional, Steady State Heat Conduction without Heat Generation: 

i) Plane Wall or Slab of Uniform Conductivity without Heat Generation: 

  Consider steady state heat conduction through a plane wall of thickness ‘L’ and 

area ‘A’ having uniform conductivity ‘k’ as shown in Figure 1. Temperature on the left 

hand side of the wall is T1 and on the right hand side it is T2. Heat is flowing from left 

hand side to the right hand side as T1 is greater than T2. The general conduction equation 

which governs the conduction heat transfer is written as  
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  Since it is a case of one-dimensional, stead heat conduction through a wall of uniform 

conductivity without heat generation, therefore, 0
dT

dt
=  ,  0

dT dT

dy dz
= =  and 0gq =  

Therefore, equation (1) reduces to 
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Equation (2) is used to determine the temperature distribution and heat transfer rate 

through the wall. Integrating equation (2) twice with respect to x, it can written as 



                    T = C1 x + C2                                                                                                                                                 (3) 

Where, C1 and C2 are constants of integration. 

Using the following boundary conditions: 

i. At x = 0, T = T1 

        Equation (3) is written as C2 =   T1                                                                           (4) 

ii. At x = L, T = T2 

Equation (3) can be written as T2 = C1 L + C2  

      Or         T2 = C1 L + T1 

                              C1= (T2 – T1)/L                                                                                              (5) 

Substituting the values of C1 and C2 in equation (3) 
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Equation (6) represents temperature distribution in the wall. It means temperature at any 

point along the thickness of the wall can be obtained if values of temperatures T1, T2, 

thickness L and distance of the point form either of the faces of the wall are known. 

Rate of heat transfer can be determined by using Fourier’s law and can be expressed as 
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Differentiating equation (6) with respect to x to obtain the expression for temperature 

gradient 
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Substituting the value of 
dT

dx
 from above equation in equation (7), we get 
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Equation (8) represents the heat transfer rate through the wall.       

ii) Cylinder of Uniform Conductivity without Heat Generation: 

Consider steady state heat conduction through a cylinder having r1 and r2 as inner 

and outer radii respectively and length ‘L’ as shown in Figure 2. Temperature of the inner 

and outer surfaces is T1 and T2 respectively. Heat is flowing from inner to outer surface as 

T1 is greater than T2. The general conduction equation which governs the conduction heat 

transfer is written as  
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  Since it is a case of one-dimensional, stead heat conduction through a wall of uniform 

conductivity without heat generation, therefore, 0
dT

dt
=  ,  0

dT dT

d dz
= =  and 0gq =  

Therefore, equation (9) reduces to 
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Equation (10) is used to determine the temperature distribution and heat transfer rate 

through the cylinder. Integrating equation (10) twice with respect to r, it can written as 
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dr r
=                                                                                (11) 

 and       T = C1 loge r + C2                                                                                                                                              (12) 

Using the following boundary conditions: 

i. At r = r1, T = T1 

Equation (12) is written as T1 = C1 loge r1 + C2                                                                (13) 

ii. At r = r2, T = T2 

Equation (12) can be written as  

            T2 = C1 loge r2 + C2                                                                                              (14) 

 Subtracting equation (14) from equation (13), we get 

         T1 – T2 = C1 loge r1 – C1 loge r2                           

                        
1

1 2 1

2

loge
r

T T C
r

− =   

                 
1 2

1
1

2

loge

T T
C

r

r

−
=                                                                                                   (15)                                          

Substituting the values of C1 from equation (15) in equation (13) 
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Substituting the values of C1 and C2 in equation (12), we get  

1 2 2 11 2

1 2

2 1

log log
log

log log

e e
e

e e

T r T rT T
T r

r r

r r

−−
= +

 

 

( )1 2 2 1 1 2
2

1

1
log log log

log
e e e

e

T T r T r T T r
r

r

 = − − − 
 

2
1 2

2 1

1

1
log log

log
e e

e

r r
T T T

r r r

r

 
= − 

 
                                                                           (18)                              

Equation (18) represents temperature distribution in the cylinder. Rate of heat transfer 

can be determined by using Fourier’s law and can be expressed as 
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Substituting the value of 
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from equation (21) in equation (20), we get 
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Equation (22) represents the heat transfer rate through the cylinder.   

 iii) Sphere of Uniform Conductivity without Heat Generation: 

 Consider steady state heat conduction through a hollow sphere having r1 

and r2 as inner and outer radii respectively. Temperature of the inner and outer surfaces is 

T1 and T2 respectively. Heat is flowing from inner to outer surface as T1 is greater than 

T2. The general conduction equation which governs the conduction heat transfer is 

written as  
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  Since it is a case of one-dimensional, steady heat conduction through a shere without 

heat generation, therefore, 0
dT

dt
=  ,  0

dT dT

d d 
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Therefore, equation (22) reduces to 
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Multiplying both sides of equation (23) by r2 , we get  
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Equation (24) is used to determine the temperature distribution and heat transfer rate 

through the wall. Integrating equation (23) twice with respect to r, it can written as 
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Using the following boundary conditions: 

i. At r = r1, T = T1 

Equation (26) is written as  
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ii. At r = r2, T = T2 

Equation (26) can be written as  
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 Subtracting equation (28) from equation (27), we get 
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Substituting the values of C1 from equation (29) in equation (27)                                                                           
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Substituting the values of C1 and C2 from equations (29) and (30) in equation (26) 
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Equation (31) represents temperature distribution in a sphere. Rate of heat transfer can be 

determined by using Fourier’s law and can be expressed as 
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Substituting the value of 
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from equation (34) from equation (33), we get 
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Equation (35) represents the heat transfer rate through a sphere.   

Heat Flow through Composite Geometries: 

A) Composite Slab or Wall: 

  Consider a composite slab made of three different materials having conductivity 

k1, k2 and k3, length L1, L2 and L3   as shown in Figure 3. One side of the wall is exposed 

to a hot fluid having temperature Tf and on the other side is atmospheric air at 

temperature Ta. Convective heat transfer coefficient between the hot fluid and inside 

surface of wall is hi (inside convective heat transfer coefficient) and ho is the convective 

heat transfer coefficient between atmospheric air and outside surface of the wall (outside 

convective heat transfer coefficient). Temperatures at inner and outer surfaces of the 

composite wall are T1 and T4 whereas at the interface of the constituent materials of the 

slab are T2 and T3 respectively.  
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Heat is transferred from hot fluid to atmospheric air and involves following steps: 

i) Heat transfer from hot fluid to inside surface of the composite wall by 

convection 
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ii) Heat transfer from inside surface to first interface by conduction 
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iii) Heat transfer from first interface to second interface by conduction 
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iv) Heat transfer from second interface to outer surface of the composite wall by 

conduction 
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v) Heat transfer from outer surface of composite wall to atmospheric air by 

convection 
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Adding equations (36), (37), (38) and (40), we get 
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  If composite slab is made of ‘n’ number of materials, then equation (41) reduces to 
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If inside and outside convective heat transfer coefficients are not to be considered, then 

equation (42) is expressed as 
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B) Composite Cylinder: 

      Consider a composite cylinder consisting of inner and outer cylinders of radii r1, 

r2 and thermal conductivity k1, k2 respectively as shown in Figure 4. Length of the 

composite cylinder is L. Hot fluid at temperature Tf is flowing inside the composite 

cylinder. Temperature at the inner surface of the composite cylinder exposed to hot fluid 

is T1 and outer surface of the composite cylinder is at temperature T3 and is exposed to 

atmospheric air at temperature Ta. The interface temperature of the composite cylinder is 

T2.. Convective heat transfer coefficient between the hot fluid and inside surface of 

composite cylinder is hi (inside convective heat transfer coefficient) and ho is the 

convective heat transfer coefficient between atmospheric air and outside surface of the 

composite cylinder (outside convective heat transfer coefficient). Heat is transferred from 

hot fluid to atmospheric air and involves following steps: 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i) Heat transfer from hot fluid to inside surface of the composite 

cylinder by convection 
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ii) Heat transfer from inside surface to interface by conduction 

               
( )1 1 2

2

1

2

loge

k L T T
Q

r

r

 −
=  

               ( )1 2
1

2

1

2

loge

Q
T T

k L

r

r

 = −                                                         (45) 

iii) Heat transfer from interface to outer surface of the composite cylinder 

by conduction 
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iv) Heat transfer from outer surface of composite wall to atmospheric air 

by convection 
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Adding both sides of equations (44), (45),(46) and (47), we get 
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  If the composite cylinder consists of ‘n’ cylinders, then equation (48) can be expressed 

as: 
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If inside and outside convective heat transfer coefficients are not to be considered, then 

equation (3.41) is expressed as 
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C) Composite Sphere: 

Consider a composite sphere consisting of inner and outer cylinders of radii r1, r2 

and thermal conductivity k1, k2 respectively. Hot fluid at temperature Tf is flowing inside 

the composite sphere. Temperature at the inner surface of the composite sphere exposed 

to hot fluid if T1 and outer surface of the composite cylinder is at temperature T3 and is 

exposed to atmospheric air at temperature Ta. The interface temperature of the composite 

cylinder is T2. Convective heat transfer coefficient between the hot fluid and inside 

surface of composite sphere is hi (inside convective heat transfer coefficient) and ho is the 



convective heat transfer coefficient between atmospheric air and outside surface of the 

composite sphere (outside convective heat transfer coefficient). Heat is transferred from 

hot fluid to atmospheric air and involves following steps: 

i) Heat transfer from hot fluid to inside surface of the composite sphere by 

convection 
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ii) Heat transfer from inside surface to interface by conduction. 
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iii) Heat transfer from interface to outer surface of the composite sphere by 

conduction 
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iv) Heat transfer from outer surface of composite wall to atmospheric air by 

convection 
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Adding both sides of equations (51), (52),(53) and (54), we get 
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  If the composite sphere consists of ‘n’ concentric spheres, then equation (54) can be 

expressed as: 
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                                                    (55) 

If inside and outside convective heat transfer coefficients are not to be considered, then 

equation (55) is expressed as 
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REVIEW QUESTIONS: 

Q.1 If two surfaces of area A distance L apart, of a material having thermal 

conductivity k are at temperature T1 and T2, then heat flow rate through it will be 

a)  b)  

c)  d)  

e)   

 

 

Q.2 Two plane slabs of equal areas and conductivities in the ratio 1:2 are held together 

and temperature in between surface ends are t1 and t2 . If junction temperature in 



between two surfaces is desired to be , then their thickness should be in 

the ratio of  

a) 1 : 2 b) 2 : 1 

c) 1 : 1 d) 3 : 1 

e) 1 : 3  

Q.3 The heat flow rate through parallel walls of thickness L1, L2, L3 and having 

surface areas A1, A2 and A3, thermal conductivities k1, k2 and k3, respectively and 

first and last walls maintained at temperatures T1 and T2 will be 

a)  

 

b)  

 

c)  

 

d)  

e)  

 

 

Q.4 If the inner and outer walls of a hollow sphere having surface areas of A1 and A2, 

and inner and outer radii r1 and r2 are maintained at temperatures T1 and T2, then rate of 

heat flow will be 

a) k  b)  

c) 4πk  d) 4πkr1 r2  

e) None of the above  

 

 

 


