
LESSON 4 

One-Dimensional, Steady State Heat Conduction with Heat Generation: 

One dimensional, steady state heat conduction is considered for following geometries 

1) Slab 

2) Cylinder 

3) Sphere 

1) One-Dimensional Heat Flow through a slab with Heat Generation: 

              i) When Temperature of Both Sides of Slab is Same: 

 Consider a slab of thickness ‘L’ and cross-sectional area ‘A’ through which heat 

flow takes place in x-direction. A heat source located at the center of the slab is 

generating ‘qg’ amount of heat per unit volume per unit time as shown in Figure 1.                                                                                      
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Heat generated is conducted equally towards the sides of the slab through a distance ‘x’ 

measured from center of the slab along x-direction. Temperature of both sides of the slab 

is same and is equal to T1 as same amount of heat is flowing from the center towards the 

sides of the slab.  

At the center of the slab x=0 and at the sides of the slab x= L/2. The general conduction 

equation under the given conditions reduces to 
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dx k
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Integrating equation (1) with respect to ‘x’, we get 
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dx k
+ =                                                                         (2) 

Integrating equation (2) again with respect to ‘x’, we get 
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Using the boundary conditions,  

   At x = 0,  0
dT

dx
= , From equation (2), we get  

                  1 0C =                                                                                             (4) 

At x = L/2, T = T1, From equation (3), we get 
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As 1 0C =  , we can write 
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Substituting the values of 1C  and 2C  in equation (3), we get 
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Equation (6) represents temperature distribution equation in the slab having a heat 

generating source present inside it. 

Temperature will be maximum at the center of the slab where x = 0 
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Flow of heat can be expressed as: 
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Using equation (2), we can write 
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Substituting value of  
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  from equation (9) in equation (8), we get      
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Equation (10) represents flow from one of sides of the slab; therefore, total heat flow 

from both the sides is expressed as 
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q
Q AL ALq=  =  

Total Heat Conducted from both sides of the slab = Volume x Heat generating capacity 

Total Heat Conducted from both sides of the slab = Total Heat generated 

Under steady state conditions, heat conducted at x = L/2 must be equal to convected from 

a side to the atmospheric air. Therefore, 

        ( )1
2

g

a

q
Q AL h A T T= = −  

         1
2

g

a

q L
T T

h
= +                                                                                            (11) 

Substituting the value of T1 from equation (11) in equation (6), we get 
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Equation (12) represents temperature distribution, if one side of the slab is insulated  

At one side, temperature distribution will be represented by equation (6) except that L/2 

will be replaced by L and is expressed as  
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ii) When Temperature of Both Sides of Slab are Different: 

If the heat source present inside the slab generates heat qg per unit volume and 

heat distribution in towards both slabs is not uniform then the temperature of both sides 

of the slab will be different as shown in Figure 2. 
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The differential equation governing the heat flow through the slab is expressed as: 
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gqd T

dx k
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Integrating equation (13) with respect to ‘x’, we get 
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gqdT
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dx k
+ =                                                                         (14) 

Integrating equation (4.14) again with respect to ‘x’, we get 
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Applying the boundary conditions,  

   At x = 0, T = T1, From equation (15), we get  

                  2 1C T=                                                                                             (16) 

At x = L, T = T2,  From equation (15), we get 
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Substituting the values of 1C  and 2C  in equation (15), we get 
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     Subtracting T2 from both sides of the equation (18), we get  
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Dividing both sides of the equation (19) with T1-T2, we get 
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Where 
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Equation (20) represents temperature distribution equation in the slab having a heat 

generating source present inside it. In order to find out the location of maximum 

temperature in the slab equation (20) is differentiated with respect to ‘x’ and equated 

equal to zero. 
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Equation (21) gives the location of maximum temperature in the slab. The equation 

representing the maximum value of temperature is obtained by substituting the value of 

maximum x /L from equation (21) into equation (20). 
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Flow of heat from one surface is given as 
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From equation (14) substituting the value of dT/dx, we get 
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Substituting the value of C1 from equation (17), we get 
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Similarly heat flow from the other surface 
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In case maximum temperature occurs inside the slab, heat will flow from both surfaces of 

the slab and total heat flow will be given as: 



  QT = Q1+Q2  

In case T1 is the maximum temperature, heat will flow towards x (+ve only) and heat lost 

will be given as: 

QT = Q2 

One-Dimensional Heat Flow through a cylinder with Heat Generation 

i) A hollow Cylinder: 

 Consider a hollow cylinder of length L having inner and outer radii r1 and r2 

respectively in which flow of heat is unidirectional along the radial direction. T1 and T2 

are temperatures of the inner and outer surfaces of the cylinder respectively. In order to 

determine temperature distribution and heat flow rate, a small element at radius r and 

thickness dr is considered. A heat source present inside this elemental strip is generating 

qg amount of heat per unit volume as shown in Figure 3.   
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  Heat conducted into the element, Qr = -k(2 π r L) dT/dr                                (23)                      

  Heat generated in the element, Qg =  2 π r L dr qg                                                         (24) 

  Heat conducted out of the element, ( )r dr r r

d
Q Q Q dr

dr
+ = +                             (25)    

              For steady state condition of heat flow 



 Heat conducted into the element + Heat generated in the element = Heat conducted out 

of the element 

Qr + Qg = Qr+dr 

                                    Qr + Qg =  ( )r r

d
Q Q dr
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Q Q dr

dr
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Substituting the values of Qr and Qg from equations (23 and 24) in equation (26), we get  
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 In order to find out the solution of the above equation, integrate it with respect to r 
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Integrating equation (28) again with respect to r, we get 
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C1 and C2 are constants of integration and the expressions for these constants can be 

found out by using the following boundary conditions  

At r=r1, T=T1 and at r=r2, T=T2 
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Subtracting equation (32) from equation (31), we get 
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Substituting the value of C1 in equation (31), we get 
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Substituting the values of C1 and C2 in equation (30), we get 
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Dividing both sides of equation (35) by T1-T2, we get 

( ) ( )
( ) ( )

( )

2 2

2 1 1 2
2 21

1
21 2 1 2 1

1 2

1

4 log
4

log

g

g

e

e

q
r r T TqT T rkr r

rT T k T T r
T T

r

− − −  −
= − +  − −  −

 

 

( )
( )

( )
( )

2 2
2 2

2 1
11

21 2 1 2 1 2 1

1

14 1 log
4

log

g

g

e

e

q
r rq r rT T rk

rT T k T T T T r

r

 
− −  −

= + −   − − −    
 



( )
( )

( )
( )

2 2
2 2

2 1
11 1 1

2 21 2 1 2 1 2

1 1

log log
4

4
log log

g
e e

g

e e

r rq
r rq r rT T r rk

r rT T k T T T T

r r

−−−
= + −

− − −

( ) ( ) ( )2 2 2 21 1 1
1 2 1

2 21 2 1 2

1 1

log log

4
log log

e e
g

e e

r r

qT T r r
r r r r

r rT T k T T

r r

 
 −  = − + − −

− −  
  

 

Multiplying and dividing Right Hand Side of the above equation by r2, we get 
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                            (36) 

Equation (36) represents temperature distribution inside a hollow cylinder with heat 

generation. 

ii) A Solid Cylinder 

 In case of solid cylinder, the governing equation remains same as equation (30) 
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Differentiating above equation with respect to r, we get 
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Applying the boundary conditions 

At r=0, 0
dT

dr
= , so C1=0 

At r=r2, T=T2,  
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Substituting the values of C1 and C2 in equation (30), we get 
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                                                                           (37) 

Equation (37) represents temperature distribution equation in a solid cylinder with heat 

generation. Maximum temperature will occur at center of the cylinder where r=0, and 

will be expressed as 
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Dividing equation (37) by equation (38), we get 
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Heat flow through a solid cylinder is expressed as 
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Heat conducted = Volume of cylinder x heat generating capacity per unit volume per unit     

                              Time 

For steady state conditions, heat conducted at r = r2 must be equal to heat convected from 

outer surface of cylinder to the surrounding fluid. 

Heat Conducted = Heat convected 

From equation (40), we can write  
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Tf  is temperature of fluid surrounding the cylinder. 

  
2

2
2

g

f

r q
T T

h
= +  

Substituting the value of T2 in equation (37), we get 
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One-Dimensional Heat Flow through a sphere with Heat Generation 

 Consider steady state heat conduction through a hollow sphere having r1 

and r2 as inner and outer radii respectively. Temperature of the inner and outer surfaces is 

T1 and T2 respectively. Heat is flowing from inner to outer surface as T1 is greater than T2 

as shown in Figure 4.  
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The general conduction equation which governs the conduction heat transfer is written as 
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                                                                                                                                  (41) 

  Since it is a case of one-dimensional, stead heat conduction through a wall of uniform 

conductivity with heat generation, therefore, 0
dT

dt
=  and  0

dT dT

d d 
= =   

Therefore, equation (41) reduces to 
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The above equation can be written as 
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Integrating equation (43) with respect to r, we get 

                         

2

1
2

gqdT r
r T C
dr k

+ + =  

                         

2

1( )
2

gqd r
rT C

dr k
+ =  

Upon integrating above equation once more with respect to r, we get 
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Applying the first boundary condition i.e. at  r = 0, dT/dr = 0  to equation (44), we get 

                                 C2 = 0                                                                                     (45) 

Applying the second boundary condition i.e  at r = r2, T =T2 to equation (43), we get 
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Substituting the values of C1 and C2 in equation (44), we get 
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                                                      (47) 

Equation (47) represents temperature distribution equation in a solid sphere having a heat 

source present inside it. 

Heat flow rate through a sphere with heat generation can be determined by using the 

following equation 
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3
gQ r q=  

Heat conducted = Volume of sphere x heat generating capacity 

For steady state conditions, heat conducted through a sphere must be equal to heat 

convected from outer surface of the sphere 
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Substitute the value of T2 from above equation in equation (47), we get 
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REVIEW QUESTIONS: 

Q.1 A solid cement wall of a building having thermal conductivity k and thickness  

is heated by convection on the inner side and cooled by convection on the outside. 

The heat flux through the wall can be expressed as 

a)  

 

b)  

 

c)  

 

d)  

 

Q.2 Heat is transferred from a hot fluid to a cold fluid through a plane wall of 

thickness , surface area A and thermal conductivity k. The thermal resistance for 

the setup is 

a)  

 

b)  

 

c)  

 

d)  

 

Q.3 A gas turbine blade (idealized as a flat plate of surface area A, thickness  and 

thermal conductivity k) has hot gases at temperature T1 on one side and cooling 

air at temperature T2 on the other side. If h1 and h2 are the corresponding surface 



coefficients of heat transfer, then the overall heat transfer coefficient U is given 

by 

a)  

 

b)  

 

c)  

 

d)  

 

Q.4 Choose the false statement 

a) The unit of heat transfer coefficient is kcal/m2-hr- °C 

b) The overall heat transfer coefficient has units of W/m2-deg 

c) In M-L-T-  system, the dimensions of convective heat transfer coefficient and 

overall heat transfer coefficient are MT-3 -1 

d) the overall heat transfer coefficient is the resistance to heat flow 

 

Q.5 A hollow cylinder of inner radius r1 and outer radius r2 is subjected to steady state 

heat transfer which results in constant surface temperature t1 and t2 at radii r1 and 

r2 respectively. 

For constant thermal conductivity k, the radial heat flow per unit length of 

cylinder is given by 

a)  

 

b)  

 

c)  

 

d)  

 

 

Q.6 A cylindrical pipe of length l has inner radius r1 and outer radius r2. The interior 

of pipe carries hot water at temperature t1 whereas outer surface of the pipe is at 

temperature t2 (T2 > T1). The rate of conduction heat loss per unit length of the 

pipe is gives as 



 

a)  

 

b)  

 

c)  

 

d)  

 

 

Q.7 For steady state and constant value of thermal conductivity, the temperature 

distribution associated with radial conduction through a cylinder has a 

a) linear b) logarithmic 

c) parabolic d) exponential curve 

 

Q.8 The heat flow equation through a cylinder of inner radius r1 and outer radius r2 is 

desired to be written in the same form as that for heat flow through a plane wall. 

For wall thickness (r1 – r2), the equivalent area Am would be 

  

a)  b)  

c)  d)  

 


